Stem-roots. Total alkaloids, 0·011%. "Weak base fraction".  $\beta$ -phenethylamine (24 mg); picrate (m.p., m.m.p.). "Moderately strong base fraction". ( $\pm$ )-salsolidine (28 mg,  $[\alpha]_D^{25}$  0°, CHCl<sub>3</sub>); base-HCl (m.p., m.m.p. tyramine (87 mg). "Strong base fraction". hordenine (120 mg); methiodide (m.p., m.m.p.). candicine (46 mg), base iodide (m.p., m.m.p.). "Water-soluble bases" choline (57 mg); picrate (m.p., m.m.p.). Unidentified quaternary bases (22 mg).

Leaves. Total alkaloids, 0.0048%. Only  $\beta$ -phenethylamine (major component), tyramine (minor), and salsolidine (traces) were obtained.

Members of the genus *Desmodium*, investigated so far,  $^{1-6}$  provide considerable variation in the types and contents of alkaloids. The alkaloid patterns of the mentioned seven species can be grouped into three broad categories. Thus, while *D. pulchellum* produces only simple indole alkaloids (tryptamine analogues and their ring closed products), *D. cephalotes* produces  $\beta$ -phenethylamine, tyrosine analogues, and a ring closed product (tetrahydroisoquinoline: ( $\pm$ )-salsolidine). *D. gangeticum*, *D. triflorum*, *D. gyrans*, *D. tiliaefolium*, and *D. floribundum* occupy intermediate position in this respect, elaborating both tryptophan and  $\beta$ -phenethylamine/tyrosine-derived "proto" and "true" alkaloids.

Preliminary pharmacological screening, conducted with the total alkaloids of *D. cephalotes*, would seem to indicate that the curative properties ascribed to the plant extracts in the Indian system of medicine are essentially due to the contained alkaloids.

Acknowledgements—The authors are grateful to Professor G B Singh, Department of Chemistry, Banaras Hindu University, Dr S C Pakrashi, Indian Institute of Experimental Medicine, Calcutta, Dr B C Das, CNRS, Gif-Sur-Yvette, France, and Dr S K Bhattacharya, Department of Pharmacology of this University, for obtaining spectral, optical rotation, and pharmacological data R M thanks the University Grants Commission, New Delhi, for the award of a senior research fellowship during the tenure of this work

Phytochemistry 1974, Vol. 13 pp. 1629 to 1630. Pergamon Press. Printed in England

## PTEROCARPANS FROM PLATYMISCIUM TRINITATIS\*

## AFRÂNIO ARAGÃO CRAVEIRO

Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará and

## OTTO R. GOTTLIEB

Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Brasil

(Received 5 November 1973)

**Key Word Index**—*Platymiscium trinitatis*, Leguminosae 6.7-dimethoxycoumarin, (6aS, 11a S)-3-hydroxy-9-methoxypterocarpan, (6aS, 11aS)-3,10-dihydroxy-9-methoxypterocarpan

Plant. Platymiscium trinitatis Bth., "macacaúba, tree, subfamily Leguminosae-Lotoideae.<sup>2</sup>

Source. Widespread throughout the drier forests of Amazonia

- \* Part XLV in the series "The Chemistry of Brazilian Leguminosae" For Part XLIV see Ref 1 Sponsored by Instituto Nacional de Pesquisas da Amazônia, Conselho Nacional de Pesquisas, Manaus
- <sup>1</sup> LEITE DE ALMEIDA, M and GOTTLIEB, O R (1973) Phytochemistry 12, 1187
- <sup>2</sup> Ducke, A (1949) As Leguminosas da Amazônia Brasileira, 2nd edn., Boletim Técnico do Instituto Agronômico do Norte, No. 18, Belém

Wood An EtOH extract was chromatographed on silica giving 6,7-dimethoxycoumarin, identified by comparison with a sample isolated from *Platymiscium praecox* Mart.<sup>3</sup> (6aS, 11aS)-3-hydroxy-9-methoxypterocarpan, identified by comparison with a sample isolated from Dalbergia decipularis Rizz. et Matt., 4 and a cmpd. C<sub>15</sub>H<sub>9</sub>O<sub>2</sub>(OH)<sub>2</sub>OMe. The PMR spectrum indicated this again to be a pterocarpan and helped to locate the substituents at C-3, 9 and 10. The relative assignment of these groups to rings A (OH) and B (OH.OMe) was based on the interpretation of the MS Acetylation caused significant paramagnetic shifts only of the PMR signals due to H-2, 4 and 7, indicating the presence of the original hydroxyls at the ortho and para-positions 3 and 10. Finally, the cmpd must possess the absolute S-configuration at both chiral centres 6a and 11a, since its ORD curve shows two positive extrema between 200 and 300 nm.<sup>5</sup> (6aS, 11aS)-3,10-Dihydroxy-9-methoxypterocarpan was isolated previously as an oil from Machaerium vestitum Vogel and designated vesticarpan 6

(6aS, 11aS)-3,10-Dihydroxy-9-methoxypterocarpan Colourless crystals, mp 154-156° (MeOH). M 286·0838,  $C_{16}H_{14}O_5$  requires 286·0841 IR  $v_{max}^{KBr}$  (cm<sup>-1</sup>) 3460, 3345, 1634, 1502. 1155. 1129, 1009, 940, 845 PMR (CDCl<sub>3</sub>, 220 MHz,  $\tau$ ) 2·57 (d, J 8 Hz, H-1), 3 28 (d. J 8 Hz, H-7), 3 50 (dd, J 8 Hz and indet, H-2), 3·57 (d, J 8 Hz, H-8), 3 62 (d, J 8 Hz, H-4), 4.48 (d, J 6 Hz, H-11a), 4.65 (s, OH), 4.83 (s, OH), 5.79 (dd, J 12, 5 Hz, H-6), 6.15 (s, OMe), 6 35 (d, J 12 Hz, H-6), ca 6.45 (m, H-6a). MS (m/e): 286 (100%) M, 285 (51) M-H, 271 (35) M-Me, 177 (5) and 164 (7) ions incorp. ring B, 147 (15) and 134 (12) ions incorp. ring A. ORD (c 0.031 mg/ml, MeOH, 320–230 mm)  $[\phi]_{315}$  0,  $[\phi]_{294}^{n}$  – 15600,  $[\phi]_{291}$  0,  $[\phi]_{280}^{2k}$  + 24000,  $[\phi]_{268}^{tr} + 17400$ ,  $[\phi]_{240}^{pk} + 37900$ .

Diacetate PMR (CCl<sub>4</sub>, 220 MHz,  $\tau$ ). 2.54 (d, J 8 Hz, H-1), 3.12 (d, J 8 Hz, H-7), 3.34 (dd, J 8, 3 Hz, H-2), 3·44 (d, J 3 Hz, H-4), 3·66 (d, J 8 Hz, H-8), 4·56 (d, J 6 Hz, H-11a), 5 82 (dd, J 12, 5 Hz, H-6), 6·26 (s, OMe), 6·43 (d, J 12 Hz, H-6), ca 6·50 (m, H-11a), 7 76 (s, COMe), 7 79 (s, COMe)

<sup>&</sup>lt;sup>3</sup> Braga de Oliveira, A., Fonseca E Silva, L. G. and Gottlieb, O. R. (1972) Phytochemistry 11, 3519

<sup>&</sup>lt;sup>4</sup> ALENCAR, R DE, BRAZ FILHO R and GOTTLIEB, O R (1972) Phytochemistry 11, 1517

SUGINOME, H (1962) Experientia 18, 162. (1966) Bull Chem Soc Japan 39, 409
 REDMAN, B T (1968) Ph D Thesis, The University. Sheffield England